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Research Objectives
*  Assess the current and historic extent of red cedar forest using 
present-day and historic aerial photography and satellite imagery 
and a GIS database

*  Quantify the effects of forest expansion on biogeochemical 
processescontrolling the storage, quantity, quality, and distribution 
of soil C and N cycling and availability

*  Determine how the life form shifts alter ecosystem balance and 
fluxes of CO2, H2O, and energy

*  Link spatially-explicit land cover change models to existing 
biogeochemical models to predict the ecosystem consequences of 
future forest expansion



Land management, interacting with climatic variability, is the key 
factor controlling land-cover change at the forest-grassland ecotone
in KS and perhaps the Great Plains and, 

Fundamental changes in biogeochemical cycling and ecosystem
function will accompany this land-cover change.  Vegetation shifts
can be expected to:

1) profoundly affect the quantity, quality, and distribution of plant C 
input to soil, 

2) alter N availability and N cycling through vegetation-induced 
changes in C quality, 

3) ultimately affect long-term soil C storage as soil organic matter and

4) alter ecosystem-scale fluxes of CO2, H2O and energy.

Hypotheses
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δ 13C reveals vegetation origin, forest or prairie, of soil
organic carbon (SOC). 



Based on changes in  δδδδ13C with depth and using soil
bulk density, we estimate that forest carbon inputs already
contributed about 20% of total SOC.

Total Forest SOC from C3 and C4 Vegetation



Regardless of vegetation, total SOC (g/m2) doesn’t differ between 
forest and prairie.  The accumulated humus and litter does contribute 
about 1 kg/m2.  



Allometric growth equations, tree density, and percent carbon can be used to 
determine aboveground biomass and carbon stocks.

Biomass regression for eastern red cedar
*based on OK and KS data (n=12) 
(with 99% confidence intervals)



The biggest effect of forest expansion on the carbon cycle is 
the accumulation and storage of C in aboveground biomass.



Based on data collected from the first 18 months of this project,
we estimate that if forest expansion continues, it may result in up
to 0.5-1.0 Pg C stored in these forests.

This C storage is at least regionally significant.  Comparatively,
continental US forests store approximately 12 Pg C.



Forest expansion decreases N availability early in the 
spring relative to prairie, but by mid-summer N availability
does not differ from prairie.
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Litter decomposition is slower in the forests.  This is 
primarily due to the quality of cedar litter, not 
microclimatic effects.
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Eddy Flux Towers in Prairie and 
Cedar Forest

Are forests sources or sinks for CO2?
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Diurnal CO2 Flux in Forest Site

Comparative grassland and forest data integrated over the year 
will indicate differences in net CO2 exchange.



Forest expansion reduces herbaceous species diversity.

Herbaceous biomass in closed canopy forests is approximately
0.18 g/m2 compared to 300-700 g/m2 in prairie .
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Using historic aerial photos we can determine rates
of cedar expansion at fine scales.

Images approximately  440 x 240 m



28 Aug 199811 Aug 1983

Landsat TM images from northern extent of study area showing 
increase in cedar with arrows

Image approximately 21 km N-S



Relationship between population growth in counties (previous slide) 
and percent closed canopy red cedar forest
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Next Steps:

1) We will use a linear spectral mixing model of the tasseled cap
bands to identify partial canopy forests and measure rates of 
canopy closure from 1983 to 1998.

Cedar83 = 97.78 - 0.886*Bright - 0.370*Green + 0.685*Wet
r2 = 0.90  p = 0.0001

Cedar98 = 262.9 -1.856*Bright -0.272*Green - 0.013*Wet
r2 = 0.73  p = 0.0009



2) We will use our process-level biogeochemical results as input
to our biogeochemical model (GEM) to predict ecosystem 
consequences of regional forest expansion.
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